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1. Introduction

Investigations concerning sums of cubes occupy a distinguished place in the theory of Waring’s prob-
lem, owing to the special interest associated with additive problems of smaller degree. As a consequence
of extensive investigations it is known, for example, that all large integers are the sum of seven cubes of
natural numbers (Linnik [7]), that the expected asymptotic formula holds for the number of represen-
tations of a large integer as the sum of eight cubes of natural numbers (Vaughan [9]), and that all large
integers in the expected congruence classes are the sum of nine cubes of prime numbers (see Theorem
11 of Hua [6]). The new iterative methods most recently associated with the use of exponential sums
over smooth numbers (that is, numbers possessing only small prime factors), which have provided the
foundation for substantial progress on Waring’s problem in the large (see Vaughan [10] and Wooley
[13]), have wrought flexible new tools for the investigation of additive problems involving cubes. Such
methods played a role, for example, in the recent proof that all large integers are the sum of seven cubes
of almost primes (see Brüdern [3]; here “almost prime” means an integer with at most 69 prime factors,
counted with multiplicity). It is therefore somewhat ironic that progress on the analogue of Waring’s
problem for sums of cubes of smooth numbers has been decidedly modest. The strongest conclusion
available hitherto is that all large integers are the sum of nine cubes of smooth numbers (see Harcos [5]).
The object of this paper is to establish a similar result with but eight cubes. In order to establish such
a conclusion, we are forced to develop the theory of cubic smooth Weyl sums in several new directions,
and our results here will be of interest beyond the present application (by way of illustration see, for
example, Brüdern and Wooley [4]). Moreover many of the ideas described herein may be adapted easily
for use in cognate problems associated with kth powers for k exceeding 3.

Before recording our main theorem, which we establish in §5 below, it is convenient to describe some
notation. When n is a positive integer, we write P (n) for the largest prime factor of n.

Theorem 1. There are fixed positive real numbers, c1 and c2, with the property that whenever the
positive integer n is sufficiently large, then the number of positive integral solutions of the equation

m3
1 + · · ·+m3

8 = n

with

P (mi) ≤ exp
(
c1(log n log log n)1/2

)
(1 ≤ i ≤ 8)

exceeds

n5/3 exp
(
−c2(log n log log n)1/2

)
.

For comparison, the main theorem of Harcos [5] provides a similar conclusion wherein the number
of summands 8 above is replaced by 9. As experts will recognise, the methods employed in our proof of
Theorem 1 permit one to establish that almost all positive integers are the sum of four positive integral
cubes, the largest prime divisors of which are small in the sense described in the statement of Theorem
1. We discuss such matters briefly at the end of §5.

Our proof of Theorem 1 makes critical use of the new knowledge concerning upper bounds for
fractional moments of smooth Weyl sums provided by “breaking classical convexity” (see Wooley [14]).
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The mean value estimates obtained through this new approach may be of use elsewhere, and so in §4
we provide detailed data associated with such upper bounds. A consequence of this work which has
already found application beyond this paper (see Brüdern and Wooley [4]) merits announcement at this
point, and this requires further notation. When P and R are positive real numbers, we define the set
A(P,R) of R-smooth numbers of size at most P by

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n and p prime ⇒ p ≤ R}.

We define also the smooth Weyl sum f(α;P,R) by

f(α;P,R) =
∑

x∈A(P,R)

e(αx3), (1.1)

where as usual we write e(z) for e2πiz. In circumstances where confusion is easily avoided, we abbreviate
f(α;P,R) to f(α), and likewise for any functions associated with f(α;P,R).

Theorem 2. There exist positive numbers η and c with the following property. Whenever P and R are
real numbers with P sufficiently large in terms of η, and satisfying

exp(c(log logP )2) ≤ R ≤ P η,

then for each real number s with s ≥ 7.691 one has∫ 1

0

|f(α;P,R)|sdα� P s−3.

On considering the underlying diophantine equation, a conclusion of the type provided by Theorem
2 is immediate from Vaughan [9, Theorem 2] for s ≥ 8, but apparently no such estimate was available
hitherto for s < 8. When there is a positive number η0 with the property that R� P η0 , then familiar
estimates (see, for example, Chapter 12 of Vaughan [11]) provide the lower bound card(A(P,R))� P .
In such circumstances, therefore, one readily establishes the lower bound∫ 1

0

|f(α;P,R)|sdα� P s−3.

It follows that Theorem 2 provides an estimate of the correct order of magnitude, although one should
emphasise that one expects this estimate to hold for s ≥ 6.

In order to establish Theorems 1 and 2 we apply the Hardy-Littlewood method. Our first step in
§2 is to prepare estimates of use on the minor arcs of the dissection, the conventional estimates for
Weyl sums being unavailable in the current context. Fortunately, rather general work of Balog and
Brüdern [2] concerning cubic exponential sums leads comfortably to suitable estimates. The traditional
approaches to estimating the major arc contribution from a treatment involving smooth Weyl sums
rely either on the presence of complete Weyl sums to gain the upper hand, or else on the presence of a
multitude of smooth Weyl sums in order that possible wild behaviour be swamped. Neither situation
pertaining to the situation at hand, we are forced in §3 to develop a new method of analysing the major
arc contribution from a product of smooth Weyl sums. This treatment will be of interest beyond the
present context. Next, in §4, we discuss fractional moments of smooth Weyl sums, concluding with the
proof of Theorem 2. Fully equipped at last, in §5 we are finally able to complete the proof of Theorem
1.

Throughout, ε will denote a sufficiently small positive number. We use � and � to denote Vino-
gradov’s well-known notation, with implicit constants depending at most on ε. In an effort to simplify
our analysis, we adopt the following convention concerning the number ε. Whenever ε appears in a
statement, either implicitly or explicitly, we assert that for each ε > 0, the statement holds for suffi-
ciently large values of the main parameter. Note that the “value” of ε may consequently change from
statement to statement, and hence also the dependence of implicit constants on ε. Finally, when y is a
real number we write [y] for the greatest integer not exceeding y.

The authors thank the referee for careful comments.
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2. Minor arc estimates

We begin our investigations by furnishing ourselves with a minor arc estimate for the smooth Weyl
sum f(α;P,R). Although the use of rather general estimates (see Vaughan [10, Theorem 1.8]) would
suffice for a weak estimate adequate to establish Theorem 1, our aim here is to obtain an estimate as
strong as possible in order that Theorem 2 be applicable in the widest range feasible. Before proceeding
further we require some notation.

We write d(q) for the number of divisors of the integer q. Also, we let κ(q) denote the multiplicative
function defined on prime powers by taking

κ(p3l) = p−l, κ(p3l+1) = 2p−l−
1
2 , κ(p3l+2) = p−l−1, (2.1)

for l a non-negative integer. When L and R are positive real numbers and π is a prime number, we
define the set of smooth numbers B(L, π,R) by

B(L, π,R) = {x ∈ N : L < x ≤ Lπ, π|x, p|x and p prime ⇒ π ≤ p ≤ R},

and we define an associated set B∗(L, π,R) by

B∗(L, π,R) = {y ∈ N : yπ ∈ B(L, π,R)}.

Let π be a prime number and let P , M and R be positive real numbers to be fixed later. Define the
sequences (am) and (bn) by

am =

{
1, when m ∈ B∗(M,π,R),

0, otherwise,

and

bn =

{
1, when n ∈ A(P, π),

0, otherwise.

Finally, when π is a prime number and U and X are positive real numbers, we write

Sπ(α;U,X) =
∑

U<u≤2U

∑
X<uv≤2X

aubve(α(πuv)3). (2.2)

It is convenient at this stage to record an estimate immediate from Balog and Brüdern [2, Lemma
5].

Lemma 2.1. Suppose that U ≥ 11X2/3. Then whenever b ∈ Z and r ∈ N satisfy (b, r) = 1, r ≤ 1
2U

9/4

and |rαπ3 − b| ≤ 2U−9/4, one has

|Sπ(α;U,X)|2 � XU +X2Uε−
1
4 +

κ(r)d(r)4X2 logX

1 +X3|π3α− b/r|
.

We are now prepared to establish our minor arc estimate for cubic smooth Weyl sums, which we
record in the following lemma.

Lemma 2.2. Let δ be any real number with 3
5 < δ < 12

5 , let ε be a positive number sufficiently small in
terms of δ, and let η be a positive number sufficiently small in terms of δ and ε. Let P be a real number
sufficiently large in terms of δ, ε, η, and let R be a real number with 2 ≤ R ≤ P η. Suppose that α is a
real number, and suppose also that a ∈ Z and q ∈ N satisfy (a, q) = 1, q ≤ P 3−δ and |qα− a| ≤ P δ−3.
Then

f(α;P,R)� qε(κ(q))1/2P (logP )
5
2 +ε

(1 + P 3|α− a/q|)1/3
+ P

9
10 +ε. (2.3)

Proof. We begin by fixing M = P 4/5, and note that Lemma 10.1 of Vaughan [10] shows that for each
w ∈ A(P,R) with w > M , there exists a unique triple (π, u, v) with w = uv, π prime, u ∈ B(M,π,R)
and v ∈ A(P/u, π). Consequently, on recalling the definitions (1.1) and (2.2), one has

f(α) =
∑

w∈A(P,R)

w>P 9/10

e(αw3) +O(P 9/10)

=
∑
π≤R

∞∑
i=0

2i≤π

∞∑
j=0

P 9/10<2jπ≤P

Sπ(α; 2iMπ−1, 2j) +O(P 9/10). (2.4)
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Next consider a prime number π and real numbers U and X with Mπ−1 < U ≤ M and P 9/10 <
πX ≤ P . Our choice of M ensures that U ≥ 11X2/3, provided that P is sufficiently large. By Dirichlet’s
Theorem on diophantine approximation, there exist b ∈ Z and r ∈ N with

(b, r) = 1, r ≤ 1
2U

9/4 and |rαπ3 − b| ≤ 2U−9/4.

Then on making use of the relations (2.1) together with an elementary estimate for the divisor function,
it follows from Lemma 2.1 that

|Sπ(α;U,X)|2 � XU +X2Uε−
1
4 +

κ(r)d(r)4X2 logX

1 +X3|π3α− b/r|

� XU +X2Uε−
1
4 +

rε−
1
3X2 logX

1 +X3|π3α− b/r|
.

We therefore deduce that whenever r > X6+20εP−27/5, then necessarily one has

|Sπ(α;U,X)| � P
9
10 +ε. (2.5)

If, on the other hand, one has r ≤ X6+20εP−27/5, then the estimate (2.5) again follows whenever

|π3rα− b| > r
2
3 +εP ε−

9
5X−1 logX,

and moreover this inequality is satisfied provided only that

|π3rα− b| > (X6+20εP−27/5)
2
3 +εP ε−

9
5X−1 logX.

We may therefore conclude that either the inequality (2.5) holds, or else there exist b ∈ Z and r ∈ N
with

(b, r) = 1, r ≤ X6+20εP−27/5 and |π3rα− b| ≤ X3+20εP−27/5, (2.6)

and moreover that in the latter circumstance one has

|Sπ(α;U,X)| � (κ(r))1/2d(r)2X(logX)1/2

(1 +X3|π3α− b/r|)1/3
. (2.7)

Suppose that the latter situation above holds, so that (2.6) and (2.7) hold. On recalling the hypothe-
ses of the statement of the lemma, it follows from the triangle inequality that∣∣∣∣aq − b

rπ3

∣∣∣∣ ≤ q−1P δ−3 + (rπ3)−1X3+20εP−27/5.

Consequently,

|arπ3 − bq| ≤ X6+20εP δ−
42
5 π3 +X3+20εP−

12
5 −δ

≤ P 20ε+δ− 12
5 + P 20ε+ 3

5−δ.

Then our hypotheses concerning δ, ε and η ensure that |arπ3 − bq| < 1, whence arπ3 = bq. But by
hypothesis one has (a, q) = (b, r) = 1, and thus r|q and q|rπ3. Thus we find that for some I with
0 ≤ I ≤ 3 one has q = rπI and b = aπ3−I . When π|q, it follows from (2.1) and (2.7) that

|Sπ(α;U,X)| � (πκ(q))1/2d(q)2X(logX)1/2

(1 + (Xπ)3|α− a/q|)1/3
,

and when π - q one similarly obtains

|Sπ(α;U,X)| � (κ(q))1/2d(q)2X(logX)1/2

(1 + (Xπ)3|α− a/q|)1/3
.
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On combining the conclusions of the above discussion with (2.4), we obtain

f(α)�P 9
10 +ε +

∑
π≤R
π|q

(logP )2 max
P

9
10<Xπ≤P

(πκ(q))1/2d(q)2X(logX)1/2

(1 + (Xπ)3|α− a/q|)1/3

+
∑
π≤R
π-q

(logP )2 max
P

9
10<Xπ≤P

(κ(q))1/2d(q)2X(logX)1/2

(1 + (Xπ)3|α− a/q|)1/3
.

Thus one deduces that

f(α)� P
9
10 +ε +

d(q)2(κ(q))1/2P (logP )5/2

(1 + P 3|α− a/q|)1/3

∑
π|q

π−1/2 +
∑
π≤R

π−1

 ,

whence, by elementary prime number theory and an elementary estimate for the divisor function, we
finally arrive at the estimate (2.3). This completes the proof of the lemma.

3. Some major arc estimates

As is usual in modern applications of the Hardy-Littlewood method, our major arc treatment rests
for its success on a suitable pruning lemma. Since this lemma will be applicable in a wider context,
it deserves a somewhat abstract formulation. We first require some additional notation. When X is a
real number with 1 ≤ X ≤ P , we define the set of major arcs M(X) to be the union of the intervals

M(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ XP−3}

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We then define the minor arcs m(X) by taking m(X) = [0, 1)\M(X).
Observe that the sets M(q, a;X) comprising M(X) are mutually disjoint. Finally, it is useful to adopt
the convention of writing N(X) = M(2X) \M(X).

Lemma 3.1. Recall the multiplicative function κ(q) defined by (2.1). Let Q be a real number with
1 ≤ Q ≤ P , and define the function Υ(α) for α ∈M(Q) by taking

Υ(α) = κ(q)2
(
1 + P 3|α− a/q|

)−1

when α ∈ M(q, a;Q) ⊆ M(Q). Then there is an absolute constant B such that for any subset A of
[1, P ] ∩ Z, one has ∫

M(Q)

Υ(α)
∣∣∣∑
x∈A

e(αx3)
∣∣∣2dα� P−1(log(2Q))B .

Proof. Observe first that∫
M(Q)

Υ(α)
∣∣∣∑
x∈A

e(αx3)
∣∣∣2dα

≤
∑

1≤q≤Q

κ(q)2

q∑
a=1

(a,q)=1

∫ Q/P 3

−Q/P 3

(1 + P 3|β|)−1
∣∣∣∑
x∈A

e
(
x3 (β + a/q)

) ∣∣∣2dβ. (3.1)

Let cq(n) be Ramanujan’s sum, which we define by

cq(n) =

q∑
a=1

(a,q)=1

e(an/q).

Then it follows that

q∑
a=1

(a,q)=1

∣∣∣∑
x∈A

e
(
x3 (β + a/q)

) ∣∣∣2=
∑
x,y∈A

cq(x
3 − y3)e(β(x3 − y3)).
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But on making the convention that (q, 0) = q, one has the well-known estimate |cq(n)| ≤ (q, n), whence
(3.1) yields ∫

M(Q)

Υ(α)
∣∣∣∑
x∈A

e(αx3)
∣∣∣2dα� P−3(log(2Q))

∑
1≤q≤Q

κ(q)2
∑

1≤x,y≤P

(q, x3 − y3). (3.2)

In order to analyse the final summation of (3.2), we introduce the function ρ(r), which when r is
a natural number we define to be the number of solutions of the congruence x3 ≡ y3 (mod r) with
1 ≤ x, y ≤ r. For any natural number r one may write r = r1r

3
3 with r1 cube-free, and moreover this

decomposition is unique. Further, an elementary counting argument shows that, for a suitable fixed
positive number C (one may check that C = 8 is admissible), one has ρ(r)� Cω(r)rr3, where here and
throughout ω(n) denotes the number of prime divisors of n. Then by sorting the variables x and y into
residue classes, one obtains∑

1≤x,y≤P

(q, x3 − y3) ≤
∑
d|q

d · card
(
{1 ≤ x, y ≤ P : x3 ≡ y3 (mod d)}

)
≤
∑
d|q

(
P

d
+ 1

)2

dρ(d).

When q ≤ P , therefore, we deduce that∑
1≤x,y≤P

(q, x3 − y3)� P 2
∑
d|q

d−1ρ(d)� P 2
∑
d|q

Cω(d)d3 � P 2Cω(q)d(q)q3. (3.3)

On substituting the estimate (3.3) into (3.2) and recalling the definition (2.1), we may conclude that∫
M(Q)

Υ(α)
∣∣∣∑
x∈A

e(αx3)
∣∣∣2dα� P−1(log(2Q))

∑
1≤q≤Q

(Cω(q)d(q)q3)(4ω(q1)q−1
1 q−2

3 ),

and thus the elementary theory of arithmetic functions yields the bound∫
M(Q)

Υ(α)
∣∣∣∑
x∈A

e(αx3)
∣∣∣2dα� P−1(log(2Q))B ,

for a suitable absolute constant B. This completes the proof of the lemma.

As an immediate corollary of Lemma 3.1, we are able to obtain an estimate for the sixth moment of
f(α;P,R), restricted to suitable major arcs, which is close to the best possible such bound.

Corollary 3.2. Let δ be a real number with 0 < δ < 2
5 , let ε be a small positive number, and let η be

a positive number sufficiently small in terms of δ and ε. Let P be a real number sufficiently large in
terms of δ, ε, η, and let R be a real number with 2 ≤ R ≤ P η. Then whenever X is a real number with
1 ≤ X ≤ P δ, one has ∫

M(X)

|f(α;P,R)|6dα� XεP 3(logP )10+ε.

Proof. Consider a real number α ∈ M(q, a;X) ⊆ M(X). One has (a, q) = 1, q ≤ X and |qα − a| ≤
XP−3, so that since X ≤ P 2/5, it follows from Lemma 2.2 that the estimate (2.3) holds. An inspection
of (2.1) reveals that the expression

qε(κ(q))1/2P (logP )
5
2 +ε

(1 + P 3|α− a/q|)1/4

dominates the right hand side of (2.3) whenever α ∈M(q, a;X) ⊆M(X). Thus we deduce that∫
M(X)

|f(α)|6dα� P 4(logP )10+εXε

∫
M(X)

Υ(α)|f(α)|2dα, (3.4)
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where Υ(α) is the function defined in the statement of Lemma 3.1. But as an immediate consequence
of Lemma 3.1, ∫

M(X)

Υ(α)|f(α)|2dα� XεP−1,

whence the conclusion of the lemma is immediate from (3.4).

We remark that the factor Xε occurring in the statement of Corollary 3.2 may be replaced by the
factor (log(2X))A, for a suitable fixed real number A. All that is necessary is a more careful analysis
of the arithmetic functions underlying the terms involving qε in the above argument, and the use of
estimates from the elementary theory of arithmetic functions. In particular, therefore, one has an
estimate of the type ∫

M(X)

|f(α;P,R)|6dα� P 3(logP )A,

for a suitable fixed real number A, uniformly for 1 ≤ X ≤ P δ.

4. Mean value estimates for smooth Weyl sums

In this section we discuss the non-trivial estimates for fractional moments of smooth Weyl sums
which form a key component of our proof of Theorem 2. We first require some further notation. Let P
and R be positive real numbers, and recall the definition (1.1). When s is a real number, we define the
mean value Us(P,R) by

Us(P,R) =

∫ 1

0

|f(α;P,R)|sdα.

We say that an exponent µs is permissible whenever the exponent has the property that, for each ε > 0,
there exists a positive number η = η(ε, s) such that whenever R ≤ P η, one has

Us(P,R)�ε,s P
µs+ε.

It is a fact (see Wooley [14]) that for every positive number s, one has µs ≥ max{s/2, s−3}. Moreover,
in view of the trivial estimate for Us(P,R), one may always take µs ≤ s for each s. It is convenient to
describe an exponent δs as associated if the exponent µs = s/2 + δs is permissible, and to describe an
exponent ∆s as admissible if the exponent µs = s− 3 + ∆s is permissible.

The ideas underlying the calculation of permissible exponents µs are described in Wooley [14] in
some generality, and the particular case of cubic smooth Weyl sums is discussed more specifically in §2
of Baker, Brüdern and Wooley [1]. We recall the following lemma.

Lemma 4.1. (i) Let s be a real number with s > 2, and suppose that δs and δ2s are associated exponents.
Then the exponent δs+2 is associated, where

δs+2 = δs(1− θ) + 1
2sθ (4.1)

and

θ =
δ2s − 2δs

4 + δ2s − 2δs
.

(ii) Let s be a real number with s > 2, and suppose that δs and δ4s/3 are associated exponents. Then
the exponent δs+2 defined by (4.1) is associated, where now we take

θ =
1 + 3δ4s/3 − 4δs

9 + 3δ4s/3 − 4δs
.

Proof. This lemma is simply a combination of Lemma 1 and the Corollary to Lemma 2 of Baker,
Brüdern and Wooley [1].

We augment this lemma with a special method for estimating µ6.



8 BRÜDERN AND WOOLEY

Lemma 4.2. Suppose that δ5 and δ6 are associated exponents. Then the exponent δ′6 = 2θ is associated,
where

θ = max

{
δ6

3 + δ6
,

1 + 2δ5 + δ6
11 + 2δ5 + δ6

}
.

Proof. This is immediate from Lemma 5.2 of Wooley [14].

A convexity argument provides effortless bounds not without value.

Lemma 4.3. Suppose that s > 2 and that t < s. Whenever δs−t and δs+t are associated exponents,
then the exponent δs = 1

2 (δs+t + δs−t) is also associated.

Proof. Under the hypotheses of the statement of the lemma, an application of Schwarz’s inequality
yields ∫ 1

0

|f(α)|sdα�
(∫ 1

0

|f(α)|s−tdα
)1/2(∫ 1

0

|f(α)|s+tdα
)1/2

� P
1
2 (µs−t+µs+t)+ε.

The lemma is now immediate.

When s is comparatively large one may obtain new permissible exponents by applying the Hardy-
Littlewood method in combination with the analyses of §§2 and 3. In preparation for a discussion of
such an approach, we require more precise information concerning the behaviour of the smooth Weyl
sum f(α;P,R) on suitable major arcs.

Lemma 4.4. Let A be a positive real number, and let P and R be large real numbers. There are
absolute constants c1 and c2 such that if

exp(c1(log logP )2) ≤ R ≤ P 1/2,

and a ∈ Z and q ∈ N satisfy (a, q) = 1 and q ≤ (logP )A, then for each ε > 0 one has

f(α;P,R)� P

(q + P 3|qα− a|)
1
3−ε

+ P exp
(
−c2

√
logP

) (
1 + P 3|α− a/q|

)
.

Proof. If one were to have R = P η with 0 < η < 1
2 , then the conclusion of the lemma would be

essentially immediate from Vaughan and Wooley [12, Lemma 8.5], but in the present circumstances we
must work harder. Suppose then that ε is a sufficiently small positive number, and that (logP )/(logR)
is sufficiently large in terms of ε. We begin by observing that in the course of the proof of Lemma 8.5
of [12], the hypothesis described at the start of this proof is not essential for the use of [12, Lemma
8.3], and indeed the hypotheses of the present lemma suffice. Moreover, the aforementioned hypothesis
plays an important role only in the preamble to equation (8.6) of [12], wherein the error term should
be replaced by a term

O

(
Q log(Q/R)

logR
(1 +Qk|γ|)−1/k

)
.

In the present context, therefore, the argument of the proof of [12, Lemma 8.5] leads to the conclusion
that

f(α)� qεPν

(q + P 3|qα− a|)1/3
+ P exp

(
−c2(logP )1/2

) (
1 + P 3|α− a/q|

)
, (4.2)

where
ν = (logP )/(logR). (4.3)

Next observe that by combining an elementary estimate with Theorem 1 of Tenenbaum [8, Chapter
III.5], one finds that uniformly for 2 ≤ R ≤ P , one has

card(A(P,R))� Pe−ν/2,
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where ν is again given by (4.3). Thus for each fixed N > 0, it follows from (4.2) that

|f(α)|N+1 � qNεPN+1νNe−ν/2

(q + P 3|qα− a|)N/3

+ PN+1 exp
(
−Nc2(logP )1/2

) (
1 + P 3|α− a/q|

)N
.

We take N = 1/ε and observe that since ν is sufficiently large in terms of N , we may suppose that
νNe−ν/2 < 1. Consequently,

|f(α)| � qεP

(q + P 3|qα− a|)
1
3−ε

+ P exp
(
− 1

2c2(logP )1/2
) (

1 + P 3|α− a/q|
)
.

The conclusion of the lemma follows immediately.

Lemma 4.5. Let s be a real number with s ≥ 6, and suppose that the exponent ∆s is admissible.
Suppose also that u is a real number with u > s + 10∆s. Then there exist positive numbers η and
c, depending at most on u, with the following property. Whenever P and R are real numbers with P
sufficiently large in terms of η, and satisfying

exp(c(log logP )2) ≤ R ≤ P η,

then one has ∫ 1

0

|f(α;P,R)|udα� Pu−3.

In particular, the exponent µw = w − 3 is permissible for w ≥ u.

Proof. We apply the Hardy-Littlewood method. Let u be a real number satisfying the hypotheses of
the statement of the lemma. Let

Q = P 4/5 and Y = (logP )
80

u−6 +32,

and write m = m(Q), M = M(Q) and P = M(Y ). Suppose that α ∈ m. By Dirichlet’s Theorem on
diophantine approximation, there exist a ∈ Z and q ∈ N with (a, q) = 1, q ≤ Q−1P 3 and |qα − a| ≤
QP−3. Since α ∈ m, moreover, one necessarily has q > Q. On recalling the relations (2.1), therefore,
Lemma 2.2 reveals that

|f(α)| � qε−
1
6P (logP )

5
2 +ε

(1 + P 3|α− a/q|)1/3
+ P

9
10 +ε � P

9
10 +ε.

Consequently, ∫
m

|f(α)|udα�
(

sup
α∈m
|f(α)|

)u−s ∫ 1

0

|f(α)|sdα

�
(
P

9
10 +ε

)u−s
P s−3+∆s+ε.

But by hypothesis one has u− s > 10∆s, whence

∆s − 1
10 (u− s) + uε < 0,

and thus we deduce that ∫
m

|f(α)|udα� Pu−3. (4.4)

Next define the function f∗(α) = f∗(α;P,R) for α ∈M by taking

f∗(α;P,R) =
qε(κ(q))1/2P (logP )

5
2 +ε

(1 + P 3|α− a/q|)1/3
, (4.5)
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when α ∈M(q, a;Q) ⊆M. Then it follows from Lemma 2.2 that for α ∈M one has

|f(α)|u−s �
(
P

9
10 +ε

)u−s
+ |f∗(α)|u−s. (4.6)

Write

I1 =

∫
M\P

|f∗(α)|u−s|f(α)|sdα (4.7)

and

I2 =

∫
P

|f(α)|udα. (4.8)

Then it follows from (4.6) that∫
M

|f(α)|udα�
(
P

9
10 +ε

)u−s ∫ 1

0

|f(α)|sdα+ I1 + I2,

whence, as in the analysis concluding the treatment of the minor arc contribution,∫
M

|f(α)|udα� Pu−3 + I1 + I2. (4.9)

In view of our hypotheses concerning R, and the definition of P, it follows from Lemma 4.4 that
when 1 ≤ X ≤ Y one has

sup
α∈N(X)

|f(α)| � PXε− 1
3 .

Since the measure of N(X) is O(X2P−3), it follows that when 1 ≤ X ≤ Y one has the estimate∫
N(X)

|f(α)|udα� Pu−3X2−u( 1
3−ε).

But u > 6, so that on summing over dyadic intervals we deduce from (4.8) that

I2 � Pu−3. (4.10)

Write

I3 =

∫
M\P

|f∗(α)|u−2|f(α)|2dα.

Then on collecting together (4.4), (4.7), (4.9) and (4.10), and applying Hölder’s inequality, we obtain∫ 1

0

|f(α)|udα =

∫
m

|f(α)|udα+

∫
M

|f(α)|udα

� Pu−3 +
(∫ 1

0

|f(α)|udα
) s−2

u−2

I
u−s
u−2

3 ,

whence ∫ 1

0

|f(α)|udα� Pu−3 + I3. (4.11)

On recalling (2.1) and (4.5), we find that for each real number X with 1 ≤ X ≤ Q, one has

sup
α∈N(X)

|f∗(α)| � P (logP )
5
2 +εX−1/7.

Then by (4.5), it follows that∫
N(X)

|f∗(α)|u−2|f(α)|2dα

�
(
P (logP )

5
2 +εX−1/7

)u−6
∫
M(2X)

|f∗(α)4f(α)2|dα

�
(
P (logP )

5
2 +εX−1/7

)u−6

P 4(logP )10+εXε

∫
M(2X)

Υ(α)|f(α)|2dα,
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where Υ(α) is the function defined in the statement of Lemma 3.1. Thus, by Lemma 3.1 one has

∫
N(X)

|f∗(α)|u−2|f(α)|2dα� Pu−3(logP )10+3(u−6)X−(u−6)/8.

On summing over dyadic intervals, therefore, we may conclude that

I3 � Pu−3(logP )3u−8Y −(u−6)/8 � Pu−3.

Thus, in view of (4.11), we have established the conclusion of the lemma.

One may calculate strong associated exponents using a computer to apply Lemmata 4.1, 4.2, 4.3
and 4.5 as follows. One sets up an array of known associated exponents δjh (0 ≤ j ≤ J), for some
step size h > 0 and upper limit J (with J ≥ 16/h), by using known bounds for δs. Thus we have the
associated exponents δ4 = 0 and δs = 1

2s−3 (s ≥ 8) which follow from Hua’s Lemma (see Vaughan [11,
Lemma 2.5]), on considering the underlying diophantine equations. In combination with the associated
exponent δ6 = 1

4 due to Vaughan [10, Theorem 4.4], one may apply convexity to provide the associated
exponents

δs =


0, when 0 ≤ s ≤ 4,
1
8 (s− 4), when 4 < s ≤ 6,
3
8s− 2, when 6 < s ≤ 8,
1
2s− 3, when s > 8.

For the interesting values of j with 4/h < j < 8/h, one may now calculate new associated exponents
δjh by means of Lemmata 4.1, 4.2, 4.3 and 4.5. Observe that if 4j/3 is not an integer, but lies between
the integers i and i+ 1, then one may apply Lemma 4.1(ii) by use of the convexity bound

δ4jh/3 ≤
(
i+ 1− 4

3j
)
δih +

(
4
3j − i

)
δ(i+1)h.

By iterating this process for 4/h < j < 8/h, one derives new collections of associated exponents, and
eventually this collection converges to some set of limiting values. We note also that Lemma 4.3 may
be used in the form

δjh ≤ 1
2

(
δ(j−k)h + δ(j+k)h

)
(1 ≤ k ≤ K),

for a suitable parameter K, in order to economise on the number of operations required to obtain
convergence of the iterative process.

In the table below we record associated exponents δs for 4 ≤ s ≤ 7.691, rounded up in the final
displayed decimal place. These values were calculated by using a step size of h = 0.005, although we
record only values at intervals of 0.1. Since it is convenient in many circumstances to make use of
admissible exponents ∆s, we record also in the table the values of ∆s corresponding to each δs, these
being related by means of the formula

δs = 1
2s− 3 + ∆s.

We note that for 5 < s < 6, for 6 < s < 6.5, and for 7.365 < s < 7.691, the associated exponents
obtained by our calculations were simply linear interpolations between δ5 and δ6, between δ6 and δ6.5,
and between δ7.365 and δ7.691, respectively. We omit intermediate values, therefore, in the interests of
saving space. Of course, associated exponents may be derived for values of s between those in the table
by linear interpolation, such being justified by making use of the bounds stemming from convexity.
Finally, we remark that Lemma 4.5 was required in the derivation of associated exponents δs only for
s > 7.365.
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s δs ∆s s δs ∆s

4.0 0.000000 1.000000 6.5 0.405318 0.155318
4.1 0.001313 0.951313 6.6 0.438521 0.138521
4.2 0.005005 0.905005 6.7 0.472029 0.122029
4.3 0.010818 0.860818 6.8 0.505824 0.105824
4.4 0.018282 0.818282 6.9 0.540259 0.090259
4.5 0.026936 0.776936 7.0 0.576267 0.076267
4.6 0.037983 0.737983 7.1 0.612863 0.062863
4.7 0.049636 0.699636 7.2 0.650437 0.050437
4.8 0.061881 0.661881 7.3 0.689361 0.039361
4.9 0.074704 0.624704 7.365 0.715035 0.032535
5.0 0.088092 0.588092 7.691 0.845500 0.000000
6.0 0.249569 0.249569

We conclude this section by noting that Theorem 2 follows immediately from Lemma 4.5 on taking
s = 7.365, for as is clear from the above table, one has

7.691 > 7.365 + 10∆7.365.

5. Waring’s problem for cubes of smooth numbers

The integers employed in the representation central to Theorem 1 are substantially smoother than is
commonplace in modern treatments of Waring’s problem, and such increases the difficulty of treating
the major arc contribution in our application of the Hardy-Littlewood method. In order to circumvent
technical difficulties of this type, we work with an artificial set similar to A(P,R). When P , Q and R
are positive real numbers, we write

A∗(Q,R) = {n ∈ [1, Q] ∩ Z : p prime, p|n⇒
√
R < p ≤ R},

and then define the subset C(P,R) of A(P,R) by

C(P,R) = {lm : m ∈ A∗(P/
√
R,R) and 1 ≤ l ≤

√
R}.

We note for future reference that each element of C(P,R) is uniquely represented in the form lm
described in the definition of this set, for such l and m are coprime. It is convenient also to define

A∗(Q,R) = card(A∗(Q,R)).

Before proceeding further we require an estimate for A∗(Q,R). Here and elsewhere in this section it is
convenient to write

L(x) = exp
(√

(log x)(log log x)
)
.

Lemma 5.1. Let c be a positive real number, and let Q and R be large real numbers with R ≥ L(Q)c.
Then for each ε > 0 one has

A∗(Q,R)� QL(Q)−
1
c−ε.

Proof. A simple counting argument suffices to provide a lower bound of the quality recorded in the
statement of the lemma. Let the set of prime numbers p satisfying

√
R < p ≤ R be P = {p1, p2, . . . , pt}.

Then as a consequence of the Prime Number Theorem, one has that

R

2 logR
≤ t ≤ 2R

logR
. (5.1)

Next we observe that each element n of A∗(Q,R) is uniquely represented in the form

n = pa11 pa22 . . . patt (5.2)
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with pi ∈ P and ai a non-negative integer for 1 ≤ i ≤ t. Let T denote the set of t-tuples of non-negative
integers (a1, . . . , at) satisfying the condition

a1 + · · ·+ at ≤
logQ

logR
.

Then for each a ∈ T one has

a1 log p1 + a2 log p2 + · · ·+ at log pt ≤ logQ,

whence it follows from the uniqueness of the representation (5.2) that

A∗(Q,R) ≥ card(T ). (5.3)

The cardinality of the set A∗(Q,R) is plainly an increasing function of the parameter R. We therefore
write

m =

[
logQ

c logL(Q)

]
+ 1,

and suppose that
R = Q1/m ≤ L(Q)c.

In the latter circumstances one has m = (logQ)/(logR). Also, by a well-known estimate (see, for
example, Exercise 1 of Vaughan [11, Chapter 1]) one has

card(T ) = (−1)t+1

(
−(t+ 1)

m

)
=

(t+m)!

t!m!
.

On recalling (5.1), therefore, it follows from Stirling’s formula that

log(card(T )) ≥ (m+ t+ 1
2 ) log(m+ t)− (m+ 1

2 ) logm− (t+ 1
2 ) log t+O(1)

> m log(t/m) +m− logm,

whence

log(card(T )) > m log

(
R

m logR

)
= logQ−m log logQ.

Then in view of (5.3), we obtain

log(A∗(Q,R)) ≥ logQ−
(

1

c
+ o(1)

)√
(logQ)(log logQ),

and the conclusion of the lemma follows immediately.

It is now possible to describe our strategy for proving Theorem 1. Let c be a sufficiently large
positive number, and let n be an integer sufficiently large in terms of c. We take R = L(n1/3)c and
P = n1/3R1/800, and consider the number, T (n), of representations of n in the form

n = x3
1 + x3

2 + · · ·+ x3
8,

with xi ∈ C(P,R) (1 ≤ i ≤ 8). We aim to establish that for each positive number ε one has

T (n)� n5/3L(P )−
8
c−ε,

whence the conclusion of Theorem 1 follows immediately.
Define the exponential sum h(α) = h(α;P,R) by

h(α;P,R) =
∑

x∈C(P,R)

e(αx3).

Then by orthogonality one has

T (n) =

∫ 1

0

h(α)8e(−αn)dα. (5.4)

We apply the Hardy-Littlewood method. Let

Q = P 1/3 and Y =
√
R,

and write m = m(Q), M = M(Q), P = M(Y ) and p = m(Y ). As the first step in our analysis, we show
that the contribution arising from the arcs p in (5.4) is of smaller order than the expected main term.
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Lemma 5.2. One has ∫
p

|h(α;P,R)|8dα� P 5R−1/8.

Proof. We observe first that the computations described in §4 may be adapted to provide the estimate∫ 1

0

|h(α)|sdα� Pµs+ε, (5.5)

with s = 7.365 and µs = 4.4. In order to verify this assertion, one notes that

C(P,R) ⊆ A(P,R), (5.6)

and moreover that the techniques of Wooley [14] embodied in Lemmata 4.1, 4.2 and 4.3 depend for
their success, ultimately, only on estimates for the number of solutions of certain underlying diophantine
equations. The substitution of the set C(P,R) here for the set A(P,R) in the latter work therefore has
no deleterious effect on the desired bound embodied in (5.5). In view of (5.6), the argument applied in
the proof of Lemma 2.2 to estimate f(α;P,R) is also resilient to the substitution of the set C(P,R) for
A(P,R). On recalling the relations (2.1), therefore, we find that when α ∈ R, and a ∈ Z and q ∈ N
satisfy (a, q) = 1, q ≤ Q and |qα− a| ≤ QP−3, then one has

h(α)� qε−
1
6P (logP )

5
2 +ε

(1 + P 3|α− a/q|)1/3
+ P

9
10 +ε. (5.7)

Suppose that α ∈ m. By Dirichlet’s Theorem on diophantine approximation, there exist a ∈ Z and
q ∈ N with (a, q) = 1, 1 ≤ q ≤ P 2 and |qα − a| ≤ P−2. On recalling the relations (2.1), we find
from Lemma 2.2 that the upper bound (5.7) holds, whence h(α) � P 9/10+ε, except possibly when
1 ≤ q ≤ P 3/5 and |qα − a| ≤ P−12/5. But in the latter circumstances, Lemma 2.2 again shows that
(5.7) holds. Since α ∈ m, moreover, one necessarily has q + P 3|qα − a| > Q. On noting that we have
established the inequality (5.7) free of the accompanying hypotheses, we may conclude that

|h(α)| � P
17
18 +ε,

whence there exists a positive number τ with∫
m

|h(α)|8dα�
(

sup
α∈m
|h(α)|

)8−s∫ 1

0

|h(α)|sdα

� Pµs+ 17
18 (8−s)+2ε � P 5−τ . (5.8)

Next observe that the argument of the proof of Corollary 3.2 remains unaffected by the substitution of
h(α;P,R) for f(α;P,R), whence whenever 1 ≤ X ≤ 2P 1/3 one has∫

M(X)

|h(α)|6dα� XεP 3(logP )10+ε. (5.9)

But in view of (5.7), whenever Y ≤ X ≤ P 1/3, one has

sup
α∈N(X)

|h(α)| � PX−1/7.

It therefore follows from (5.9) that in such circumstances one has∫
N(X)

|h(α)|8dα�
(

sup
α∈N(X)

|h(α)|
)2
∫
M(2X)

|h(α)|6dα

� (PX−1/7)2XεP 3(logP )10+ε � P 5X−1/4.
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On summing over dyadic intervals, therefore, we may conclude that∫
M\P

|h(α)|8dα� P 5Y −1/4,

whence by (5.8), ∫
p

|h(α)|8dα =

∫
m

|h(α)|8dα+

∫
M\P

|h(α)|8dα� P 5Y −1/4.

The conclusion of the lemma follows immediately.

In order to investigate the contribution arising from the arcs P we must provide a suitable major
arc approximation to the function h(α). In order to describe this approximation, we write

S(q, a) =

q∑
r=1

e(ar3/q) and v(β;Z) =

∫ Z

0

e(βγ3)dγ.

Lemma 5.3. Suppose that α ∈M(q, a;Y ) ⊆ P. Then

h(α;P,R) = q−1S(q, a)
∑

m∈A∗(P/
√
R,R)

v((α− a/q)m3;
√
R) +O(PRε−

1
4 ).

Proof. Suppose that α ∈M(q, a;Y ) ⊆ P, so that a ∈ Z, q ∈ N, (a, q) = 1, q ≤ Y and |qα− a| ≤ Y P−3.

Since each of the prime divisors of any element of A∗(P/
√
R,R) exceeds Y =

√
R, it follows that for

each m ∈ A∗(P/
√
R,R) one has (m, q) = 1. Thus we deduce from Vaughan [11, Theorem 4.1] that for

each m ∈ A∗(P/
√
R,R) one has∑
1≤x≤

√
R

e(αm3x3) = q−1S(q, am3)v((α− a/q)m3;
√
R) +O(Y

1
2 +ε)

= q−1S(q, a)v((α− a/q)m3;
√
R) +O(R

1
4 +ε).

The conclusion of the lemma follows immediately on summing over the elements of A∗(P/
√
R,R).

We are now poised to complete the proof of Theorem 1. Define the function h∗(α) = h∗(α;P,R) for
α ∈ P by taking

h∗(α;P,R) = q−1S(q, a)
∑

m∈A∗(P/
√
R,R)

v((α− a/q)m3;
√
R), (5.10)

when α ∈M(q, a;Y ) ⊆ P. Then it follows from Lemma 5.3 that

sup
α∈P
|h(α)− h∗(α)| � PRε−

1
4 ,

whence for α ∈ P one has

|h(α)8 − h∗(α)8| � |h(α)− h∗(α)|
(
|h(α)|7 + |h(α)− h∗(α)|7

)
� P 2Rε−

1
4 |h(α)|6 + P 8R8ε−2.

On recalling (5.9) and noting that the measure of P is O(RP−3), therefore, one finds that∫
P

h(α)8e(−αn)dα−
∫
P

h∗(α)8e(−αn)dα� P 5R8ε−1 + P 5(logP )10+εR2ε− 1
4 ,

whence by Lemma 5.2, ∫ 1

0

h(α)8e(−αn)dα−
∫
P

h∗(α)8e(−αn)dα� P 5R−1/8. (5.11)
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Next we observe that by a change of variable, one obtains∑
m∈A∗(P/

√
R,R)

v(βm3;
√
R) =

∑
m∈A∗(P/

√
R,R)

1

m

∫ m
√
R

0

e(βγ3)dγ,

and thus, by partial integration, ∑
m∈A∗(P/

√
R,R)

v(βm3;
√
R)� P logP

(1 + P 3|β|)1/3
. (5.12)

On recalling (5.10), therefore, standard end-game technique (see, for example, Chapter 4 of Vaughan
[11]) now reveals that∫

P

h∗(α)8e(−αn)dα−S(n)J(n)� P 5(logP )8Y −2/3 � P 5R−1/8, (5.13)

where we write

S(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)8
e(−na/q),

J(n) =
∑

m1,...,m8∈A∗(P/
√
R,R)

(m1 . . .m8)−1

∫ ∞
−∞

∫
B(m)

e(β(γ3
1 + · · ·+ γ3

8 − n))dγdβ,

and the box B(m) is defined by

B(m) = [0,m1

√
R]× [0,m2

√
R]× · · · × [0,m8

√
R].

The singular series S(n) is the familiar one associated with Waring’s problem for sums of eight cubes,
and thus one has S(n)� 1 uniformly in n. Also, on combining Lemma 5.1 with a trivial estimate, we
obtain

√
R
(
A∗(P/

√
R,R)−A∗( 2

3n
1/3/
√
R,R)

)
� PL(P )−

1
c−ε +O(PR−1/800)

� PL(P )−
1
c−ε,

provided that c > 800. But whenever mi ≥ 2
3n

1/3/
√
R for 1 ≤ i ≤ 8, one has that [0, 2

3n
1/3]8 ⊆ B(m),

and thus an application of Fourier’s integral formula rapidly establishes that

J(n)�
∑

2n1/3

3
√

R
<m1≤ P√

R

m1∈A∗(P/
√
R,R)

· · ·
∑

2n1/3

3
√

R
<m8≤ P√

R

m8∈A∗(P/
√
R,R)

n5/3(m1 . . .m8)−1

� n5/3(P/
√
R)−8

(
P√
R
L(P )−

1
c−ε
)8

.

On recalling (5.4), (5.11) and (5.13), therefore, we may finally conclude that

T (n)� n5/3L(P )−
8
c−8ε +O(n5/3L(P )−c/20),

and thus Theorem 1 follows whenever c is sufficiently large.
Observe that the methods concluding the proof of Theorem 1 above together with those of Chapter

4 of Vaughan [11], may be used to show that, uniformly for 1
2n < m ≤ n, one has the lower bound∫

P

h(α)4e(−αm)dα� n1/3(P/
√
R)−4(A∗(P/

√
R,R))4.

On combining the latter bound, through the medium of Bessel’s inequality, with the minor arc bound
provided by Lemma 5.2, one may routinely establish that almost all positive integers are the sum of
four positive integral smooth cubes. Let E(X;R) denote the number of integers n with 1 ≤ n ≤ X for
which the diophantine equation

n = x3
1 + x3

2 + x3
3 + x3

4

has no solution with P (xi) ≤ R (1 ≤ i ≤ 4). The reader may verify that a careful analysis along the
above lines shows that when η is a sufficiently small positive number and X is a sufficiently large real
number, then whenever L(X)c ≤ R ≤ Xη, one has

E(X;R)�ε XR
ε− 1

6 .
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